PCB Mounting Hall effect Current Sensor

SCK33D Series

Product description

Features:

- Based on the Hall effect measurement principle, open loop circuit method.
- The isolation voltage between primary and secondary is greater than 3000VAC.
- Easy to install, small in size and not occupying space.
- The material of the product has good mechanical properties such as corrosion resistance, aging resistance, and heat resistance.
- Potting glue has elastic characteristics.
- Designed according to UL94-V0 flame retardant rating.

Performance:

- It can measure DC, AC, pulse, and various irregular waveform currents of cable conductors under isolation conditions.
- High measurement accuracy, wide range, fast response speed, low zero drift, low temperature drift, small overshoot, and good linearity.
- The dynamic performance (DI/DT and response time) is the best when the busbar is completely filled with the primary perforation.
- Strong ability to resist external electromagnetic interference (ESD, EFT, CS, CE, BCI, dv/dt, etc.).

Implementation standards:

- GB 7665
- JB/T 7490
- JB/T 9329-1999
- JB/T9473-1999
- SJ/20792-2000

Application:

- It can be applied to AC frequency conversion speed regulation and servo motor traction.
- Battery power, uninterruptible power supply.
- Switching power supply, welding machine power supply.
- Electric vehicles.
- New energy sources such as photovoltaics.

Model	SCK33D-			
Index (25°C)	200A	300A	400A	500A
Rated current I _{PN}	200A	300A	400A	500A
Measuring range I _{PM}	±200A	±300A	±400A	±500A
Output Signal V _{out} @±I _{PN} , R _L =10KΩ	2.5V±2V			

Performance Parameters

Name	Minimum	Typical	Maximum	Measure
		value		
Input power supply voltage range Vc	+4.5	+5	+5.05	V_{DC}
(Remark 1) (1%)				
Current consumption Ic	-	±13	±15	mA
Withstand resistance R _{INS} @500V DC	1000	-	-	ΜΩ
Output voltage Vout @IPN,	-	0.5~4.5V	-	V
$R_L=25K\Omega$, $T_A=25^{\circ}C$				
Output internal resistance R _{OUT}	101	102	103	Ω
Load Resistance R _L (Remark 2)	1	10	-	ΚΩ
Accuracy X @ I_{PN} , $T_A = 25^{\circ}C$	-	±1	±1.5	%
Linearity $\epsilon_L@R_L=10K\Omega$, $T_A=25^{\circ}C$	-	±0.5	±1.0	$\% I_{PN}$
Zero output voltage $V_{OE}@T_A=25^{\circ}C$	-	±10	±20	mV
Hysteresis voltage V_{OM} @ $I_{PN}{\longrightarrow}0$	-	±10	±20	mV
Temperature Coefficient of Offset	-	±0.5	±1	mV/℃
Voltage TCV _{OE}				
Output voltage temperature	-	±0.05	±0.1	%/°C
coefficient TCV _{out}				
Response time $t_D @ 0 \rightarrow I_{PN}$	-	3	5	us
Bandwidth BW	-	50	-	Hz
Ambient operating temperature T_A	-40	25	125	${\mathbb C}$
Ambient storage temperature T _s	-40	25	125	${\mathbb C}$
Withstand voltage		3000		$ m V_{AC}$
V _D @50Hz,60s,0.1mA				
Weight m		25		g

Remarks:

- 1. If VC is less than the minimum value, the measurement will be inaccurate, and if VC is greater than the maximum value, the measurement device may fail permanently.
- 2. When 4.5 < VCC < 5.05, the measurement range will be reduced.
- 3. di/dt > 50A/uS

Dimensions (in mm)

Terminal Pin	Function
(+) 1	+5V
(G) 2	OV
(M) 3	Output

Notes:

1. General tolerance: ±0.3mm

2. Interface pin size: 3 PIN 0.68*0.68mm Recommended PCB opening: ø0.9mm

3. Primary aperture (primary current aperture): ø18mm

4. Fastening hole: ø1.0*3

Recommended PCB opening: ø2.0mm

Incorrect wiring may damage the sensor