
Hall effect Current Sensor

SCK11

Product description:

Features

- Based on the Hall effect measurement principle, open loop circuit method.
- The isolation voltage between primary and secondary is greater than 3000VAC.
- Designed according to UL94-V0 flame retardant rating.
- Standing and lying two installation methods.

Performance

- It can measure DC, AC, pulse, and various irregular waveform currents of cable conductors -1under isolation conditions.
- High measurement accuracy, wide range, fast response speed, low zero drift, low temperature drift, small overshoot, and good linearity.
- The dynamic performance (DI/DT and response time) is the best when the busbar is completely filled with the primary perforation.
- Strong ability to resist external electromagnetic interference (ESD, EFT, CS, CE, BCI, dv/dt, etc.).

Application

• It can be widely used in inverters, UPS, photovoltaic inverters, electric vehicle drives, high-frequency power supplies, inverter welding machines and other products.

Implementation standards

- GB/T 7665-2005
- JB/T 7490-2007
- JB/T 25480-2010
- JB/T 9473-2020
- SJ 20792-2000

Certifications

Shenzhen SoCan Technologies Co.,Ltd

SoCan is committed to continuously improving product quality, and the company reserves the right to update its products.

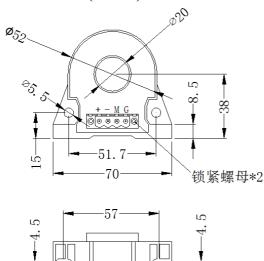
www.szsocan.com

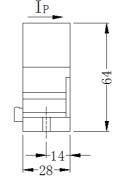
Technical Parameters

Model	SCK11T-						
Parameters (25°C)	50A	100A	200A	4	300A	500A	600A
Primary Current (A)I _{PN}	50A 100A		200A	200A		500A	600A
Primary Current Max. Peak Value (A) I _{PM}	±150A	±300A	±600.	A	±900A	±1200A	±1200A
Output voltage (V) $V_{out} @\pm I_{PN}$, $R_L=10K\Omega$	±4V±1%						
Electrical Data							-
Item			Min.		Typical	Max.	Unit
Input power supply voltage range Vc (±5%) (Remark 1, Remark 2)			±11		±15	±18	V _{DC}
Current consumption Ic			-		±15	±20	mA
Withstand resistance R _{INS} @500V DC			1000		-	-	MΩ
Output voltage Vout $@I_{PN}$, R _L =10K Ω , T _A = 25 °C			3.960		4.000	4.040	V
Output internal resistance R _{OUT}			-		102	-	Ω
Load Resistance R _L (Remark 3)			1		10	-	KΩ
Accuracy X $@I_{PN}$, $T_A = 25^{\circ}C$			-		±1	-	%
Linearity ε_L @ R_L =10K Ω , T_A = 25°C			-		±0.5	-	%I _{PN}
Offset voltage $V_{OE} @T_A = 25^{\circ}C$			-		±10	±20	mV
Hysteresis voltage V_{OM} @ $I_{PN} \rightarrow 0$			-		±10	±20	mV
Temperature Coefficient of Offset Voltage TCV _{OE}			-		±0.5	±1	mV/°C
Output voltage temperature coefficient TCV _{out}			-		±0.05	±0.1	%₀/°C
Response time $t_D @ 0 \rightarrow I_{PN}$			-		3	5	us
Ambient operating temperature T _A			-40		25	125	°C
Ambient storage temperature T _s			-40		25	125	°C
Withstand voltage V _D @50Hz,60s,0.1mA					3000		V _{AC}
Weight m					110		g

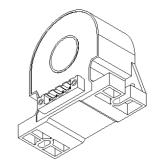
Remark:

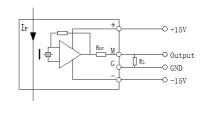
1. If VC is less than the minimum value, the measurement will be inaccurate. If VC is greater than the maximum value, it may cause permanent failure of the measuring device.


Shenzhen SoCan Technologies Co.,Ltd


2. When $\pm 12V \le V_{CC} \le \pm 15V$, will reduce the measurement range.

3.
$$V_{OUT} = 4.00 * \frac{R_L}{102 + R_L} * \frac{I_P}{I_{PN}} + V_{OE}$$


4. di/dt > 50A/uS


Dimensions (in mm)

- 3 -

Note:

2

1. Size error: ±1mm;

2. Primary aperture: φ20mm;

3.5

3. Fastening hole: φ4.5mm*2;

4. Output terminal: 2EDGIV-5.08-4P;

Mating plug: 2EDGIK-5.08-4P;

5. The IP indication direction is the positive direction of the current;

8.2

- 6. The temperature of the primary conductor shall not exceed 105°C;
- 7. Incorrect wiring may cause damage to the sensor.

SoCan is committed to continuously improving product quality, and the company reserves the right to update its products.