Hall effect Current Sensor

SCK12

Product description:

Features

- Based on the Hall effect measurement principle, open loop circuit method.
- The isolation voltage between primary and secondary is greater than 3000VAC.
- Designed according to UL94-V0 flame retardant rating.
- Standing and lying two installation methods.

Performance

- It can measure DC, AC, pulse, and various irregular waveform currents of cable conductors under isolation conditions.
- High measurement accuracy, wide range, fast response speed, low zero drift, low temperature drift, small overshoot, and good linearity.
- The dynamic performance (DI/DT and response time) is the best when the busbar is completely filled with the primary perforation.
- Strong ability to resist external electromagnetic interference (ESD, EFT, CS, CE, BCI, dv/dt, etc.).

Application

It can be widely used in inverters, UPS, photovoltaic inverters, electric vehicle drives, high-frequency power supplies, inverter welding machines and other products.

Implementation standards

- GB/T 7665-2005
- JB/T 7490-2007
- JB/T 25480-2010
- JB/T 9473-2020
- SJ 20792-2000

Certifications

Technical Parameters

Model	SCK12T-							
Parameters (25°C)	200A	300A	500A	800A	1000A	1500A	2000A	
Primary Current (A)I _{PN}	200A	300A	500A	800A	1000A	1500A	2000A	
Primary Current Max. Peak Value (A) I _{PM}	±600A	±900A	±1500A	±2400A	±3000A	±3000A	±3000A	
Output voltage (V) V_{out} @ $\pm I_{PN}$, R_L = $10K\Omega$	±4V±1%							

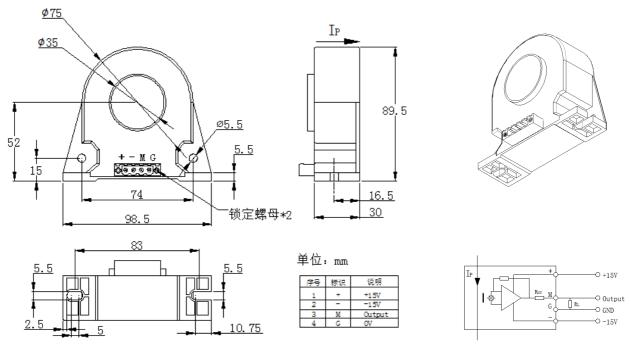
Electrical Data

Item	Min.	Typical	Max.	Unit
Input power supply voltage range Vc (±5%) (Remark 1, Remark 2)	±11	±15	±18	V _{DC}
Current consumption Ic	-	±15	±20	mA
Withstand resistance R _{INS} @500V DC	1000	-	-	ΜΩ
Output voltage Vout $@I_{PN}$, $R_L=10K\Omega$, $T_A=25^{\circ}C$	3.960	4.000	4.040	V
Output internal resistance R _{OUT}	-	102	-	Ω
Load Resistance R _L (Remark 3)	1	10	-	ΚΩ
Accuracy X @ I_{PN} , $T_A = 25^{\circ}C$	-	±1	-	%
Linearity ϵ_L @ R_L =10 $K\Omega$, T_A = 25°C	-	±0.5	-	%I _{PN}
Offset voltage $V_{OE}@T_A=25^{\circ}C$	-	±10	±20	mV
Hysteresis voltage V _{OM} @ I _{PN} →0	-	±10	±20	mV
Temperature Coefficient of Offset Voltage TCV _{OE}	-	±0.5	±1	mV/°C
Output voltage temperature coefficient TCV _{out}	-	±0.05	±0.1	%/°C
Response time $t_D @ 0 \rightarrow I_{PN}$	-	3	5	us
Ambient operating temperature T _A	-40	25	125	$^{\circ}$
Ambient storage temperature T _s	-40	25	125	${\mathbb C}$
Withstand voltage V _D @50Hz,60s,0.1mA		3000		V _{AC}
Weight m		260		g

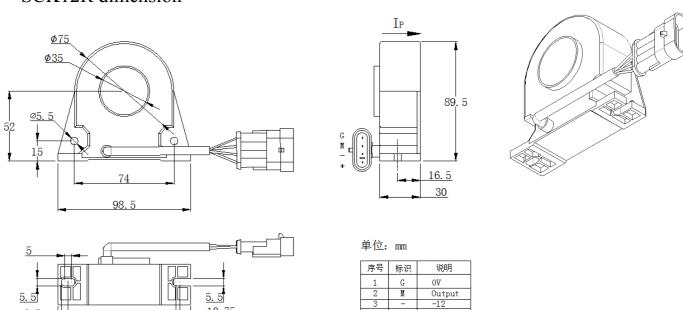
Remarks:

- 1. If VC is less than the minimum value, the measurement will be inaccurate. If VC is greater than the maximum value, it may cause permanent failure of the measuring device.
- 2. When $\pm 12V < V_{CC} < \pm 15V$, will reduce the measurement range.

3.
$$V_{OUT} = 4.00 * \frac{R_L}{102 + R_L} * \frac{I_P}{I_{PN}} + V_{OE}$$


Shenzhen SoCan Technologies Co.,Ltd

SoCan is committed to continuously improving product quality, and the company reserves the right to update its products.


4. di/dt > 50A/uS

Dimensions (in mm)

SCK12T dimension



SCK12R dimension

83

10.75

Notes

1. Size error: ±1mm;

2. Primary aperture: $\phi 35mm$;

3. Fastening hole: φ5.5mm*2;

4. SCK12T output terminal: 2EDGIV-5.08-4P;

SCK12T matching plug: 2EDGIK-5.08-4P;

5. SCK12R rubber case: 282106-1/AMP

SCK12R Terminal: 282404-1/AMP

SCK12R waterproof plug: 281934-1/AMP

6. The IP indication direction is the positive direction of the current;

7. The temperature of the primary conductor shall not exceed 105°C;

8. Incorrect wiring may cause damage to the sensor.