Hall effect Current Sensor

Q/SC 003 2010

SCK13

Product description

Features

- Based on Hall effect measurement principle, open loop circuit mode.
- The isolation voltage between primary and secondary is greater than 3000VAC.
- Comply with UL94-V0 flame retardant rating.

Performance

- It can measure DC, AC, pulse, and various irregular waveform currents of cable conductors under isolation conditions.
- Wide measurement range, fast response speed, low zero drift, low temperature drift, high accuracy and good linearity.
- Dynamic performance (di/dt and response time) is optimal when the busbar is fully filled with primary perforations.
- Strong ability to resist external electromagnetic interference (BCI, EFT, CS, CE, ESD, dv/dt, etc.).

Application

• It can be widely used in inverters, UPS, photovoltaic inverters, electric vehicle drives, high-frequency power supplies, inverter welding machines and other products.

Implementation standards

- GB/T 7665-2005
- JB/T 7490-2007
- JB/T 25480-2010
- JB/T 9473-2020
- SJ 20792-2000

Certification

Shenzhen SoCan Technologies Co.,Ltd

SoCan is committed to continuously improving product quality, and the company reserves the right to update its products.

Technical Parameters

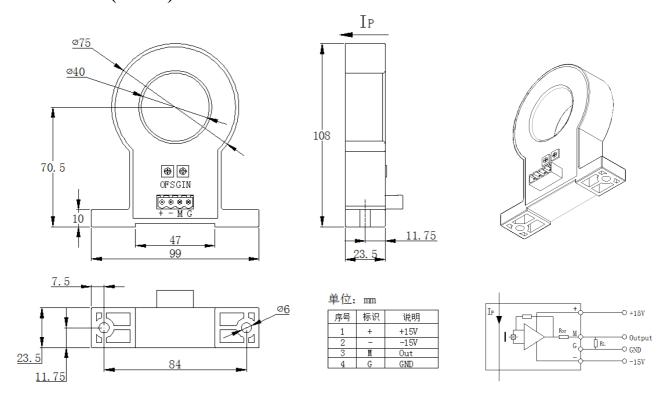
Model	SCK13T-								
Parameters (25°C)	200A	300A	500A	800A	1000A	1500A	2000A		
Primary Current (A)I _{PN}	200A	300A	500A	800A	1000A	1500A	2000A		
Primary Current Max. Peak Value (A) I _{PM}	±600A	±900A	±1500A	±2400A	±2400A	±2400A	±2400A		
Output voltage (V) $V_{out} @\pm I_{PN}, \\ R_L = 10 K\Omega$				±4V±1%					

Electrical Data

Item	Min.	Typical	Max.	Unit
Input power supply voltage range Vc (±5%) (Remark 1, Remark 2)	±11	±15	±18	V _{DC}
Current consumption Ic	-	±15	±20	mA
Withstand resistance R _{INS} @500V DC	1000	-	-	ΜΩ
Output voltage Vout @ I_{PN} , R_L =10K Ω , T_A =25°C	3.960	4.000	4.040	V
Output internal resistance R _{OUT}	-	102	-	Ω
Load Resistance R _L (Remark 3)	1	10	-	ΚΩ
Accuracy X @I _{PN} , T _A = 25 °C	-	±1	-	%
Linearity ε_L @ R_L =10K Ω , T_A = 25°C	-	±0.5	-	%I _{PN}
Offset voltage V _{OE} @T _A = 25°C	-	±10	±20	mV
Hysteresis voltage V _{OM} @ I _{PN} →0	-	±10	±20	mV
Temperature Coefficient of Offset Voltage TCV _{OE}	-	±0.5	±1	mV/℃
Output voltage temperature coefficient TCV _{out}	1	±0.05	±0.1	%/°C
Response time $t_D @ 0 \rightarrow I_{PN}$	-	3	5	us
Ambient operating temperature T _A	-40	25	125	${\mathbb C}$
Ambient storage temperature T _s	-40	25	125	${\mathbb C}$
Withstand voltage V _D @50Hz,60s,0.1mA		3000		V_{AC}
Weight m		230		g

Shenzhen SoCan Technologies Co.,Ltd

SoCan is committed to continuously improving product quality, and the company reserves the right to update its products.


Remarks:

- 1. VC is less than the minimum value, which will lead to inaccurate measurement, VC is greater than the maximum value, which may cause permanent failure of the measurement device.
- 2. When \pm 12V<VC< \pm 15V, the measurement range will be reduced.

$$3.V_{OUT} = 4.04*\frac{R_L}{102 + R_L}*\frac{I_P}{I_{PN}} + V_{OE}$$

4. Follow the speed di/dt>50A/uS

Dimensions (in mm)

Notes:

1. Size error: ±1mm;

2. Primary aperture: φ40mm;

3. Fastening hole: φ6mm*2;

4. Output terminal: 2EDGVC-5.08-4P;

Mating plug: 2EDGK-5.08-4P;

- 5. The IP indication direction is the positive direction of the current, OFS is the zero adjustment, and GIN is the output regulation;
- 6. The temperature of the primary conductor shall not exceed 105°C;
- 7. Incorrect wiring may cause damage to the sensor.

Shenzhen SoCan Technologies Co.,Ltd

SoCan is committed to continuously improving product quality, and the company reserves the right to update its products.