DC Leakage Current Sensor

SCD9

Product description

Features

- SCD9 series DC leakage current sensor, using the principle of magnetic modulation closed-loop, for isolated measurement of DC milliampere small current.
- The isolation voltage between primary and secondary is greater than 3000VAC.
- Temperature compensation circuit control, zero drift, accurate measurement.
- Perforated input, unplugging terminals, screw fastening flat mounting.
- Overall size(mm): $161(L) \times 35(W) \times 150(H)$; Aperture: 81mm
- Comply with UL94-V0 flame retardant rating.

Applications

Widely used in emerging industries and fields such as electric power, industrial automation, solar photovoltaic, etc.

Implementation standards

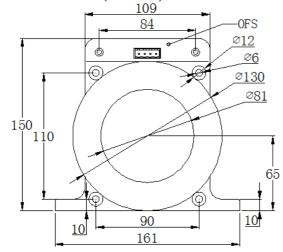
- GB/T 7665-2005
- JB/T 25480-2010
- JB/T 11205-2011
- SJ 20790-2000

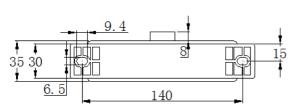
Implementation standards:

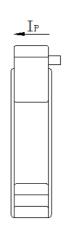
Technical Parameters

Model	SCD9-						
Parameters (25°C)	10mA	20mA	50mA	100mA	1A		
Primary Current I _{PN} (DC)	10mA	20mA	50mA	100mA	1A		
Primary Current Max. Peak Value I _{PM} (DC)	±12mA	±24mA	±60mA	±120mA	±1.2A		
Output voltage V_{out} $@\pm I_{PN}$, R_L =10 $K\Omega$			±5V±1%				

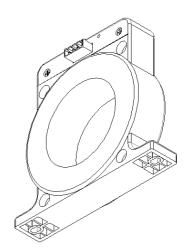
Electrical Data


Item	Min.	Typical	Max.	Unit
Input power supply voltage range Vc (±5%) (Remark 1)	±11	±12	±18	V _{DC}
Current consumption Ic	-	±10	-	mA
Withstand resistance R _{INS} @500V DC	1000	-	-	ΜΩ
Output voltage Vout @ I_{PN} , $R_L=10K\Omega$, $T_A=25^{\circ}C$	4.950	5.000	5.050	V
Output internal resistance R _{OUT}	-	100	-	Ω
Load Resistance R _L	-	10	-	ΚΩ
Accuracy X @ I_{PN} , $T_A = 25$ °C	-	±1	-	%
Linearity ε_L @ R_L =10K Ω , T_A = 25°C	-	±0.5	-	%
Offset voltage $V_{OE}@T_A=25^{\circ}C$	-	±50	-	mV
Temperature coefficient of offset voltage TCV_{OE}	-	±1	±2	mV/℃
Response Time $t_D @ 0 \rightarrow I_{PN}$	-	500	900	ms
Operating ambient temperature range T_A	-10	25	75	${\mathbb C}$
Storage ambient temperature range T_s	-25	25	85	${\mathbb C}$
Insulation withstand voltage VD@50Hz, 60s, 0.1mA		3000		V _{AC}
Weight m		750		g


Remark:


1. If VC is less than the minimum value, the measurement will be inaccurate. If VC is greater than the maximum value, it may cause permanent failure of the measuring device.

$$V_{OUT} = 5.05 * \frac{R_L}{100 + R_L} * \frac{I_P}{I_{PN}} + V_{OE}$$


Dimensions (in mm):

Notes:

1. Size error: ±1mm;

2. Primary aperture: φ81mm;

3. Fastening hole: ○ 6.5*2.9mm*2;4. Output terminal: 2EDGVC-5.08-4P;

5. The IP indication direction is the positive direction of the current, and the OFS is the zero adjustment;

6. Incorrect wiring may cause damage to the sensor;

7. The zero voltage of the sensor can be adjusted appropriately according to the needs of users;